Kinematics Practice with Calculus - Differentiation

- 1. The position of an object moving along a straight line is given by $x = 3 2t^2 + 3t^3$ where x is in meters and t in seconds. **SHOW ALL WORK and/or EXPLAIN IN DETAIL!**
 - a) Derive the expressions for the velocity and acceleration of the object as a function of time.

 ($v = -4t + 9t^2$, a = -4 + 18t)
 - b) Find the position of the object at t = 0, t = 2s, t = 4s.

(3m, 19m, 163m)

(0s, 0.44s)

c) Find the displacement or the object between t = 2s and t = 4s; between t = 0s and t = 4s.

(144m, 160m)

d) Find the average velocity between t = 2s and t = 4s; between t = 0s and t = 4s; between t = 1s and t = 3s. (72m/s, 40m/s, 31m/s)

e) What is the instantaneous velocity at t = 2s? at t = 5s? (28m/s, 205m/s)

f) At what time(s) is/are the instantaneous velocities zero?

(0.22s)	Unit 1 KINEMATICS g) When does the instantaneous velocity have a maximum or a minimum value?
(177m/s)	h) Find the change in velocity between t = 2s and t = 5s. (See part e)
: 3s. (59m/s², 32m/s²)	i) Find the average acceleration between t = 2s and t = 5s; between t = 1s and t =
(0.22s	j) When is the instantaneous acceleration of the object zero?
(32m/s², 86m/s²)	k) Find the instantaneous acceleration of the object at t = 2s; t = 5s.

2. The position of a body moving along a straight line is given by $x = 16t - 6t^2$ where x is in meters and t in seconds.	
a) Find the position of the body at t = 1s.	(10m)
b) At what times does the body pass the origin?	(0s, 2.67s)
c) Calculate the average velocity of the body between t = 0 and 2 seconds.	(4m/s)
d) Find the velocity of the object at any time t.	(v = 16 - 12t)
e) What is velocity at t = 0? at t = 2s?	(16m/s, -8m/s)
f) At what times and positions will the body be at rest?	(1.33s, 10.6m)
g) Find the acceleration of the body at any time t.	(-12m/s²)
h) When is the acceleration of the body zero?	(never)

	ng the data calculated from a-n, plot a vs t, v vs t, and x vs t.	
а	(m/s^2)	
	t (s)	
V _I	(m/s)	
	t (s)	
	. (6)	
x 	(m)	
	t (s)	
j) Dur	ring what time interval(s) is the body "speeding up" (i.e. accelerating)?	(t > 1.33s)
k) Du	ring what time interval(s) is the body "slowing down" (i.e. decelerating)?	(0 < t < 1.33s)